考前輔導(dǎo)高考數(shù)學(xué)_人教版數(shù)學(xué)知識(shí)點(diǎn)
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
學(xué)習(xí)從來(lái)無(wú)捷徑,循序漸進(jìn)登岑嶺。若是說(shuō)學(xué)習(xí)一定有捷徑,那只能是用功,由于起勁永遠(yuǎn)不會(huì)騙人。學(xué)習(xí)需要用功,做任何事情都需要用功。下面是小編給人人整理的一些數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)人人有所輔助。
考點(diǎn)一:聚集與淺易邏輯
聚集部門(mén)一樣平常以選擇題泛起,屬容易題。重點(diǎn)考察聚集間關(guān)系的明晰和熟悉。近年的試題增強(qiáng)了對(duì)聚集盤(pán)算化簡(jiǎn)能力的考察,并向無(wú)限集生長(zhǎng),考察抽象頭腦能力。在解決這些問(wèn)題時(shí),要注重行使幾何的直觀性,并注重聚集示意方式的轉(zhuǎn)換與化簡(jiǎn)。淺易邏輯考察有兩種形式:一是在選擇題和填空題中直接考察命題及其關(guān)系、邏輯聯(lián)絡(luò)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛?、全稱(chēng)命題和特稱(chēng)命題的否認(rèn)等,二是在解答題中深條理考察常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題歷程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考察函數(shù)的界說(shuō)域與值域、函數(shù)的性子、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為,解答題與導(dǎo)數(shù)交匯在一起考察函數(shù)的性子。導(dǎo)數(shù)部門(mén)一方面考察導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考察導(dǎo)數(shù)的簡(jiǎn)樸應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式泛起,屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式泛起,如一些不等式恒確立問(wèn)題、參數(shù)的取值局限問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證實(shí)等問(wèn)題。
考點(diǎn)三:三角函數(shù)與平面向量
一樣平常是小題,綜合解答題。小題一道考察平面向量有關(guān)觀點(diǎn)及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的彌補(bǔ)。大題中若是沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道息爭(zhēng)答題相互彌補(bǔ)的三角函數(shù)的圖像、性子或三角恒等變換的問(wèn)題,也可能是考察平面向量為主的試題,要注重?cái)?shù)形連系頭腦在解題中的應(yīng)用。向量重點(diǎn)考察平面向量數(shù)目積的觀點(diǎn)及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等連系,解決角度、垂直、共線等問(wèn)題是“新熱門(mén)”題型.
考點(diǎn)四:數(shù)列與不等式
不等式主要考察一元二次不等式的解法、一元二次不等式組和簡(jiǎn)樸線性計(jì)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置題。對(duì)不等式的工具性穿插在數(shù)列、剖析幾何、函數(shù)導(dǎo)數(shù)等解答題中舉行考察.在選擇、填空題查等差或等比數(shù)列的觀點(diǎn)、性子、通項(xiàng)公式、求和公式等的天真應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高等問(wèn)題.
界說(shuō):
用符號(hào)〉,=,〈號(hào)毗鄰的式子叫不等式。
性子:
①不等式的雙方都加上或減去統(tǒng)一個(gè)整式,不等號(hào)偏向穩(wěn)固。
②不等式的雙方都乘以或者除以一個(gè)正數(shù),不等號(hào)偏向穩(wěn)固。
③不等式的雙方都乘以或除以統(tǒng)一個(gè)負(fù)數(shù),不等號(hào)偏向相反。
分類(lèi):
①一元一次不等式:左右雙方都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是不等式叫一元一次不等式。
②一元一次不等式組:
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的`實(shí)際背景。
(2)一元二次不等式
,找高中輔導(dǎo)班的好處 1、讓孩子的知識(shí)面廣一些 學(xué)校就是教孩子做人,讓孩子改變命運(yùn)的一個(gè)地方,但是學(xué)習(xí)的知識(shí)不是完全的,還有很多孩子在學(xué)習(xí)學(xué)不到,然而補(bǔ)習(xí)班就相當(dāng)于這樣一個(gè)地方,找高中輔導(dǎo)班還能讓孩子學(xué)習(xí)上他們?cè)趯W(xué)校學(xué)不到的一些東西,能把他們?cè)谏险n時(shí)候?qū)W不到的東西都要學(xué)會(huì)把這些知識(shí)都弄懂,還可以讓孩子進(jìn)行理解,找到自己的不足,能找到適合自己的學(xué)習(xí)方法.,a.關(guān)于統(tǒng)一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個(gè)不等式的解集的公共部門(mén),叫做這個(gè)一元一次不等式組的解集。
考點(diǎn):
①解一元一次不等式(組)
②憑證詳細(xì)問(wèn)題中的數(shù)目關(guān)系列不等式(組)并解決簡(jiǎn)樸現(xiàn)實(shí)問(wèn)題
③用數(shù)軸示意一元一次不等式(組)的解集
(一)導(dǎo)數(shù)第一界說(shuō)
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有界說(shuō),當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),響應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);若是△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一界說(shuō)
(二)導(dǎo)數(shù)第二界說(shuō)
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有界說(shuō),當(dāng)自變量x在x0處有轉(zhuǎn)變△x(x-x0也在該鄰域內(nèi))時(shí),響應(yīng)地函數(shù)轉(zhuǎn)變△y=f(x)-f(x0);若是△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二界說(shuō)
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
若是函數(shù)y=f(x)在開(kāi)區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱(chēng)函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就組成一個(gè)新的函數(shù),稱(chēng)這個(gè)函數(shù)為原來(lái)函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱(chēng)導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
行使導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一樣平常步驟
(求f¢(x)
(確定f¢(x)在(a,b)內(nèi)符號(hào)(若f¢(x)>0在(a,b)上恒確立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒確立,則f(x)在(a,b)上是減函數(shù)
用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一樣平常步驟
(求f¢(x)
(f¢(x)>0的解集與界說(shuō)域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與界說(shuō)域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間